11. Abstract Provide an accurate summary of the research objectives, animal species, strain and sex, key methods, principal findings, and study conclusions. examples
Example 1
“BACKGROUND AND PURPOSE: Asthma is an inflammatory disease that involves airway hyperresponsiveness and remodelling. Flavonoids have been associated to anti-inflammatory and antioxidant activities and may represent a potential therapeutic treatment of asthma. Our aim was to evaluate the effects of the sakuranetin treatment in several aspects of experimental asthma model in mice.
EXPERIMENTAL APPROACH: Male BALB/c mice received ovalbumin (i.p.) on days 0 and 14, and were challenged with aerolized ovalbumin 1% on days 24, 26 and 28. Ovalbumin-sensitized animals received vehicle (saline and dimethyl sulfoxide, DMSO), sakuranetin (20 mg kg–1per mice) or dexamethasone (5 mg kg–1 per mice) daily beginning from 24th to29th day. Control group received saline inhalation and nasal drop vehicle. On day 29, we determined the airway hyperresponsiveness, inflammation and remodelling as well as specific IgE antibody. RANTES, IL-5, IL-4, Eotaxin, IL-10, TNF-a, IFN-g and GMC-SF content in lung homogenate was performed by Bioplex assay, and 8-isoprostane and NF-kB activations were visualized in inflammatory cells by immunohistochemistry.
KEY RESULTS: We have demonstrated that sakuranetin treatment attenuated airway hyperresponsiveness, inflammation and remodelling; and these effects could be attributed to Th2 pro-inflammatory cytokines and oxidative stress reduction as well as control of NF-kB activation.
CONCLUSIONS AND IMPLICATIONS: These results highlighted the importance of counteracting oxidative stress by flavonoids in this asthma model and suggest sakuranetin as a potential candidate for studies of treatment of asthma.” [1]
Example 2
“In some parts of the world, the laboratory pig (Sus scrofa) is often housed in individual, sterile housing which may impose stress. Our objectives were to determine the effects of isolation and enrichment on pigs housed within the PigTurn® — a novel penning system with automated blood sampling — and to investigate tear staining as a novel welfare indicator. Twenty Yorkshire × Landrace weaner pigs were randomly assigned to one of four treatments in a 2 × 2 factorial combination of enrichment (non-enriched [NE] or enriched [E]) and isolation (visually isolated [I] or able to see another pig [NI]). Pigs were catheterised and placed into the PigTurns® 48 h post recovery. Blood was collected automatically twice daily to determine white blood cell (WBC) differential counts and assayed for cortisol. Photographs of the eyes were taken daily and tear staining was quantified using a 0–5 scoring scale and Image-J software to measure stain area and perimeter. Behaviour was video recorded and scan sampled to determine time budgets. Data were analysed as an REML using the MIXED procedure of SAS. Enrichment tended to increase proportion of time standing and lying laterally and decrease plasma cortisol, tear-stain area and perimeter. There was a significant isolation by enrichment interaction. Enrichment given to pigs housed in isolation had no effect on plasma cortisol, but greatly reduced it in non-isolated pigs. Tear-staining area and perimeter were highest in the NE-I treatment compared to the other three treatments. Eosinophil count was highest in the E-NI treatment and lowest in the NE-I treatment. The results suggest that in the absence of enrichment, being able to see another animal but not interact may be frustrating. The combination of no enrichment and isolation maximally impacted tear staining and eosinophil numbers. However, appropriate enrichment coupled with proximity of another pig would appear to improve welfare.” [2]